skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sonanis, Atharva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Modern engineered systems, and learning‐based systems, in particular, provide unprecedented complexity that requires advancement in our methods to achieve confidence in mission success through test and evaluation (T&E). We define learning‐based systems as engineered systems that incorporate a learning algorithm (artificial intelligence) component of the overall system. A part of the unparalleled complexity is the rate at which learning‐based systems change over traditional engineered systems. Where traditional systems are expected to steadily decline (change) in performance due to time (aging), learning‐based systems undergo a constant change which must be better understood to achieve high confidence in mission success. To this end, we propose pairing Bayesian methods with systems theory to quantify changes in operational conditions, changes in adversarial actions, resultant changes in the learning‐based system structure, and resultant confidence measures in mission success. We provide insights, in this article, into our overall goal and progress toward developing a framework for evaluation through an understanding of equivalence of testing. 
    more » « less